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Abstract

A computational strategy for the evaluation of stresses in a finite element implementation of a new plastic-damage-

contact model is described. As part of this strategy a new return-mapping algorithm is developed which fully couples

plasticity to directional damage on one or more damage surfaces, and which ensures that local and total constitutive

relationships are simultaneously satisfied. In addition, an associated consistent tangent matrix is derived. The perfor-

mance of the model, as implemented with this new strategy, is explored in a range of 2D and 3D examples which include

analyses based on direct and indirect fracture tests, a mixed mode fracture test, shear-normal tests in which aggregate

interlock is significant and a reinforced concrete test in which cracking, aggregate interlock and crushing all contribute

significantly to the behavior. It is concluded that the consistent computational approach gives solutions with good

equilibrium convergence properties. Furthermore, it is concluded that the new model, as implemented in the finite

element code, is able to represent a wide range of the behavior of plain and reinforced concrete structures.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The type of stress return-mapping algorithm and the form of tangent constitutive matrix employed in the

implementation of a constitutive model in a finite element program have an enormous impact upon the

robustness and efficiency of the solution process and upon the accuracy of results obtained. For elasto-

plastic models implicit algorithms for stress computations and associated consistent tangent matrices are
nowadays largely preferred because, despite the increased computational effort, they result in better con-

vergence and more accurate results than those of algorithms based upon explicit integration schemes (Simo

and Hughes, 1998).
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The principles of the consistent approach were established by Simo and Taylor (1985), and have since

been applied by many researchers to various plasticity models, e.g. Borja (1991), Larsson and Runesson

(1996). Ortiz and Martin (1989) have studied the conditions for maintaining symmetry of the tangent

constitutive operator and the implications for solutions in which such symmetry is not maintained. In some
recent work, explicit expressions were derived for the consistent tangent matrix which avoided the inversion

of a fourth order plastic flow rate gradient tensor (Palazzo et al., 2000; Le Van and de Saxc�ee, 2000), an
operation which can be computationally expensive.

Implicit integration algorithms have also been presented for plastic damage models. de Souza Neto and

Peri�cc (1996) describe an implicit algorithm for an elasto-plastic isotropic damage model at finite strains,

Johansson et al. (1999) present an algorithm for a viscoplastic model coupled to scalar damage, but with

micro-crack-closure and reopening, and Armero and Oller (2000) describe an implicit method for a plastic

damage model for porous metals, which also accounts for the opening and closing of voids. Recently, Lee
and Fenves (2001) have presented an efficient returning mapping algorithm for a plastic damage model that

employs a spectral decomposition of the stress matrix. The aforementioned algorithms were all for models

that used scalar damage variables, but Mahnken et al. (2000) describe the implementation of Ortiz�s (1985)
model, which, for the mortar component, uses an anisotropic damage formulation that has a fourth order

damage compliance tensor. For this model, the fully implicit approach developed requires the computation

of the derivatives of the principal stress and projection tensors with respect to the Cartesian stress com-

ponents. Whilst the model is quite different from the model referred to in this paper, a similar set of de-

rivatives is required by the present algorithm, and therefore the work of Mahnken et al. (2000) is of
particular relevance to the present work.

Amodel for concrete is described in an associated paper Jefferson (2003) which couples directional damage

to plasticity and which employs contact mechanics to simulate crack opening–closing and shear contact

effects. Themodel uses damage planes, the stresses on which are governed by a local constitutive relationship,

but which also satisfy the static constraint, i.e. that the local stresses are the transformed components of the

total stress tensor. A key aspect of the development of the model was the derivation of a so-called �total–local�
condition that ensures that both the local and total constitutive relationships are satisfied.

This paper describes the implementation of the Craft model and in particular a new implicit stress re-
turn-mapping algorithm for the plastic-damage-contact model. The paper also includes a number of finite

element analysis examples that are used to study the convergence properties of the solutions, the ability of

the model in a finite element context to simulate experimental behavior and also to judge the effects and

accuracy of the new contact approach to the simulation of aggregate interlock.

The constitutive model has been implemented in the finite element program LUSAS (FEA Ltd, 2002),

which was used for all of the simulations described later in the paper.
2. Model relationships

The model is described fully in the associated paper and therefore only the relationships essential for the

description of the present algorithm will be presented here.

The stresses satisfy the yield condition
F ðr; jÞ6 0 ð1Þ
where j is the plastic parameter.

The plastic flow relationship is given by
_eep ¼ _kk
oG
or

ð2Þ
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where the superior dot denotes the time derivative, k is the plastic multiplier and G the plastic potential

function.

A modified work hardening function is used such that
_jj ¼ XrT oG
or

ð3Þ
where X is a stress dependent parameter.

The local stress vector on a plane of degradation (POD) is related to the global stress tensor as follows
si ¼ Nir ð4Þ

where r is the total stress tensor, si is the local stress vector which has one normal and two shear com-

ponents with respect to the POD and Ni is the transformation matrix for POD i.
The relationship between the local effective strains (e) and the local stresses is given by
si ¼ DLMxiei ¼ Dlsiei ð5Þ

in which DL is a local elastic constitutive matrix and Mx ¼ Mx (e; f; j) is a local damage-contact matrix.

The �fracture� component of the local strain is obtained as follows
ef i ¼ ðM�1
xi

� IÞCLsi ¼ ðI�MxiÞei ¼ Clsf isi ð6Þ

The stress–�recoverable� strain relationship is given by
r ¼ I

 
þDe

Xnp
j¼1

NT
j ClsfjNj

!�1

Deðe� epÞ ¼ Defcðe� epÞ ð7Þ
in which I is the identity matrix, np is the number of PODs, De is the elastic constitutive matrix, ep is the

plastic strain tensor.
3. Return-mapping algorithm

In the context of a finite element incremental–iterative solution for a time independent problem, the

stress update is made from the previous converged state. The values of quantities on entry to and exit from

the return-mapping algorithm are denoted by the subscripts k and k þ 1 respectively. The total change of

any quantity from the last converged state is denoted by D and d is used to denote the change of a quantity
in a stress-update iteration.

In this section it will be assumed that the number of PODs and the need, or otherwise, to include plastic

yield have already been established. The strategy used for making these choices and the way in which new

PODs are formed are discussed in Section 5 of this paper.

The aim of the update algorithm is to compute the new stresses rkþ1 for the incremental strain De from
the previous stresses rk such that all of the following relationships are satisfied; the total constitutive re-

lationship,
rkþ1 ¼ De ekþ1

 
� epkþ1

�
Xnp
j¼1

NT
j ef jkþ1

!
ð8Þ
the stress transformation;
skþ1 ¼ Nkþ1rkþ1 ð9Þ

the local stress–strain relationships for all PODs i;
sikþ1
¼ Dlsikþ1

eikþ1
ð10Þ
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ef ikþ1
¼ Clsf ikþ1

sikþ1
ð11Þ
the flow rule and plastic parameter,
Dep ¼
oG

orkþ1

Dk ð12Þ

Dj ¼ Xkþ1Dk
oG

orkþ1

ð13Þ
and the yield function
F ðrkþ1; jkþ1Þ ¼ 0 ð14Þ

The following total–local function is used to ensure (8)–(11) are simultaneously satisfied
Feikþ1
¼ Nikþ1

rkþ1 �Dlsikþ1
eikþ1

¼ 0 ð15Þ
The approach developed is essentially an extension of the Closest Point Projection algorithm (Simo and

Hughes, 1998). Error measures are introduced for the plastic strain and plastic parameter, which along with

the error in the yield function and total–local function are used in a coupled Newton iterative solution

procedure.

For clarity the overall iteration subscripts will now be dropped, it being assumed that all quantities on
the right of an equation are those from the previous update iteration (or the values from the previous

overall finite element increment for the first iteration).

The plastic strain and hardening parameter errors are defined as follows
Re ¼ �Dep þ
oG
or

Dk ð16Þ

Rj ¼ �Djþ X DkrT oG
or

ð17Þ
From which the iterative corrections are obtained as follows
dep ¼ Re þ dk
oG
or

þ Dk
o2G
or2

dr ð18Þ

dj ¼ ajðRj þ DkkT
rdrþ cj dkÞ ð19Þ
in which
aj ¼ 1

�
� DkXrT oG

or

��1

; cj ¼ XrT oG
or

and kr ¼
oX
or

rT oG
or

þ X
o2G
or2

rþ X
oG
or
The yield function consistency condition is written as
F þ oF
or

T

drþ oF
oj

dj ¼ 0 ð20Þ
which, making use of (19) and rearranging gives
F þ fTj drþ oF
oj

ajRj þ hj dk ¼ 0 ð21Þ
where fj ¼ oF =orþ ðoF =ojÞajDkkr and hj ¼ ðoF =ojÞajcj.
The total–local consistency condition is obtained from (15), as follows:
Fei þNi drþ oNi

or
� rdr� oDlsi

oei
� ei dei �

oDlsi

oj
djei �Dlsi dei ¼ 0 ð22Þ
in which � is used to denote a contraction with respect to the �in-plane� components of a third order matrix.
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Since the POD directions do not change during these stress update iterations, although as explained later

they are set within the overall stress update process, the third term is null here. Then, using Eq. (19), (22)

may be written
Fei þNDi dr� dji ajðRj þ cj dkÞ �Dltidei ¼ 0 ð23Þ

where Dlti ¼ ðoDlsi=oeiÞ � ei þDlsi , dji ¼ ðoDlsi=ojÞei and NDi ¼ Ni � dji ajik

T
ri
Dk.

The first trial stress is given by
r ¼ De e

 
þ De� ep �

Xnp
j¼1

NT
j ef j

!
ð24Þ
and thereafter iterations are performed to satisfy Eqs. (8)–(14), throughout which the total strain tensor

does not change and thus the iterative change in the stress is given by
dr ¼ �De dep

 
þ
Xnp
j¼1

NT
j defj

!
ð25Þ
The iterative change in ef is given by
def i ¼ ðI�M0
xi
Þdei þm0

ji
dj ð26Þ
where M0
x ¼ Mx þ ðoMx=oeÞ � e and m0

j ¼ ðoMx=ojÞe.
Making use of (18), (19) and (26), Eq. (25) may be rearranged to be
dr ¼ �A Re

 
þ dk

oG
or

þ
Xnp
j¼1

NT
j ððI�M0

xj
Þdej þm0

jj
ðajðRj þ cj dkÞÞÞ

!
ð27Þ
in which
A ¼ I

"
þDe Dk

o2G
or2

 
�
Xnp
j¼1

NT
j m

0
jj
ajk

T
r Dk

!#�1

De
Substituting for dr from Eq. (27) in both Eqs. (21) and (23) gives a set of coupled equations with dk and dei
as the unknowns. These are written in the following compact form, in which i and j are indices from 1 to np
and in which the summation of repeated indices is implied.
Fk ¼ Mk dkþ bkj dej
FEi ¼ mEidkþ BEi;jdej

ð28Þ
in which
Fk ¼ F � fTjA Re

 
�
Xnp
k¼1

NT
km

0
jk
ajRj

!
þ oF

oj
ajRj

FEi ¼ Fei �NDiA Re

 
�
Xnp
k¼1

NT
km

0
jk
ajRj

!
� dji ajRj

Mk ¼ fTjA
oG
or

 
�
Xnp
k¼1

NT
km

0
jk
ajcj

!
� hj

mEi ¼ NDiA
oG
or

 
�
Xnp
k¼1

NT
km

0
jk
ajcj

!
þ dji ajcj
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bkj ¼ fTjAN
T
j ðI�M0

xj
Þ

BEi;j ¼ NDiAN
T
j ðI�M0

xj
Þ þDlti;j@i;j
where @i;j in the expression for BE is the Kronecker delta.

The overall steps of the return-mapping algorithm may now be summarized for the case when one or

more POD exists and there is plastic yield

Box 1. Return-mapping algorithm

Step Description

1 Initialize Dk ¼ 0 and Dj ¼ 0

2 Compute trial stress from (24)

3 Evaluate Fk, Mk, bk, FE, mE, BE from (28) and solve for dk and dei
4 Compute dr from (27)

5 Update ei using ei ¼ ei þ dei and update fi
6 Compute dep, dj from (18) and (19) respectively

7 Update plastic terms

ep ¼ ep þ dep, Dep ¼ Dep þ dep, Dk ¼ Dkþ dk, Dj ¼ Djþ dj and j ¼ jþ dj

8 Compute a new trial stress from r ¼ De e� ep �
Pnp

j¼1 N
T
j ðI�MxÞej

� �
9 Compute F and Fei , Re, Rj from (14)–(17) respectively

10 Check for convergence i.e. if jF j6 rtol, jFej6 rtol, jRej6 etol and Rj 6 etol Stop, else return to

Step 2 1
4. Consistent tangent constitutive relationship

A algorithmic tangent constitutive matrix is now derived which is consistent with the above stress update

algorithm. The differential form of Eq. (8) may be written as
dr ¼ De de

 
� dep �

Xnp
j¼1

NT
j defj

�
þ dNT

j efj

�!
ð29Þ
The term dNi, which is only non-zero for PODs that have formed since the last converged state, is com-

puted from the differential of the transformation matrix with respect to the trial stress components used for

new POD detection. The choice of this stress tensor, denoted rI, is discussed in Section 5. It is important

that all new PODs are based on the same rI, and that orI=oe ¼ DI can be calculated at the constitutive

matrix stage of the computation, noting that the subscript I is chosen to denote the POD Initialization

stress. Thus Eq. (29) may now be written
dr ¼ De de

 
� dep �

Xnp
j¼1

NT
j def j

 
þ
oNT

j

orI

� ef jDI de

!!
ð30Þ
The computation of the transformation matrix derivatives is potentially computationally expensive, and

therefore an efficient procedure is required for their evaluation. Mahnken et al. (2000) used an approach

given byMiehe (1993) and here a similar approach is used in that the derivatives have been computed directly
lerance levels are etol ¼ et � 10�6, rtol ¼ ft � 10�6.
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from the stress invariant derivatives, although the details of the present approach are somewhat different

from that presented by Mahnken et al. (2000). The approach used here is summarized in Appendix A.

Differentiating Eq. (6) yields
def i ¼ Cltf ds� -j dj ð31Þ

in which Cltf ¼ ðM0�1

x � IÞCL and -j ¼ M0�1
x m0

j.

The differential quantities of the plastic strain, plastic parameter and the local stress vector may be

written as follows
dep ¼ dk
oG
or

þ Dk
o2G
or2

dr ð32Þ

dj ¼ ajðDkkT
r drþ cj dkÞ ð33Þ

dsi ¼ Ni drþ oNi

orI

� rIDI de ð34Þ
Using Eqs. (31)–(34) in (30) and rearranging gives
dr ¼ Ac I

 "
�
Xnp
j¼1

NT
j Cltfj

oNj

orI

� rDI

 
þ
oNT

j

orI

� efjDI

!!
de� oG

or

 
�
Xnp
j¼1

NT
j -jajcj

� �!
dk

#
ð35Þ
in which
Ac ¼ I

"
þDe

Xnp
j¼1

NT
j CltfjNj

 
� -jajDkk

T
r

!
þ Dk

o2G
or2

#�1

De
The consistency condition for the yield surface gives
dF ¼ fTjdrþ hjdk ¼ 0 ð36Þ
Substituting for dr in Eq. (36) from (35) and rearranging gives
dk ¼ fTjAcIN

fTjAcgm � hj
de ð37Þ
in which
IN ¼ I�
Xnp
j¼1

NT
j Cltf j

oNj

orI

� rDI

 
þ
oNT

j

orI

� ef jDI

!
and gm ¼ oG

or
�
Xnp
j¼1

�
NT

j -jajcj

�

Substituting for dk in Eq. (35) from (37), gives the consistent tangent relationship, as follows
dr ¼ AcIN

"
� Acgmf

T
jAcIN

fTjAcgm � hj

#
de ð38Þ
5. Stress computation procedure

The return-mapping algorithm described in Section 3 is only one component, albeit the major one, of the

stress computation procedure. Before the return-mapping algorithm is entered however, decisions have to
be made on whether plasticity will occur and whether one or more new POD will form in the current step.

These decisions require a trial stress, the natural choice for which would be that given by Eq. (24), which
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assumes that the trial stress increment is elastic. However, this was found to be inefficient because in many

instances the elastic stress incorrectly predicted yield and POD formation. Therefore an alternative ap-

proach of using the secant elastic-damage constitutive matrix was adopted. The trial stress, upon which

yield and new POD formation decisions are made, is therefore as shown below,
Ste

1

2

3

4

2 nfo
3 Th
4 A

PODs
rI ¼ I

 
þDe

Xn
j¼1

NT
j Clsf jNj

!�1

Deðek þ De� epk Þ ¼ DIðek þ De� epk Þ ð39Þ
The overall stress recovery procedure systematically checks for the formation of PODs one at a time. The

first return-mapping is undertaken with any existing PODs and plastic flow, if required, after which a check
is performed for new POD formation. If required, one new POD is formed and the next reduction un-

dertaken and then a further check performed for the next POD. This continues until the POD formation

criterion is not violated. This procedure can result in the return-mapping exercise being carried out more

then once per analysis step per integration point, however, this systematic approach does avoid spurious

POD formation and in a reality the amount of extra computational effort in a full-scale finite element

analysis is limited.

Box 2. Overall stress calculation procedure
p Description

Record all state variables on entry

Evaluate rI from (39)
If F ðrI; jÞ > 0 and I1ðrIÞ < 0 then

Carry out return-mapping with plasticity and existing PODs to obtain new stress r
IF Dk < 0, then

Reset state variables and carryout mapping without plasticity
End if

Else
If (np > 0) carry out return-mapping with existing PODs to obtain new stress r

Else
r ¼ rI

End if

For i ¼ 1, nform. Enter POD formation loop 2

IF r1ðrÞ > fti then If major principal stress exceeds formation criterion 3

Form one new POD 4, but using principal direction of rI nearest that of r
Reset all state variables
Carryout return-mapping with revised number of PODs to obtain new stress r

Else
No new PODs, record final stress and exit formation loop

End if
End For

rm ¼ Maximum number of PODs permitted to form.

e procedure can also use alternative formation criterion, such as an initial damage function being exceeded.

POD (j) is only permitted to form if the normal satisfies rTdi rdj 6 0:65, where i ¼ 1, np (with np being the existing number of

).
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6. Examples

All of the examples were undertaken with the finite element program LUSAS (FEA Ltd, 2002) in which

the current model has been implemented. Quadratic elements were used throughout, which were 6-noded
triangular and 8-noded quadrilateral elements for 2D examples and 20-noded hexahedral elements for the

3D example. Full numerical integration was performed for all 2D elements, i.e. 3 · 3 Gaussian for quadri-

lateral and 6 point Radau for triangular elements, and Iron�s 14 point rule was used for the 20-noded

elements (FEA Ltd, 2002).

The standard tolerance adopted for convergence of the incremental iterative solutions was 10�4 for both

the out of balance force (wf ) and iterative displacement (wu), norms, which are defined below
wf ¼

ffiffiffiffiffiffiffiffiffiffiffi
wT

r wr

q
ffiffiffiffiffiffiffiffiffiffiffiffi
wT

TwT

q ð40Þ
and
wu ¼

ffiffiffiffiffiffiffiffiffiffiffi
wT

dwd

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

uTwuT

q ð41Þ
in which wr is the vector of nodal residual forces, wT is the total nodal force vector, wd is the vector of

iterative nodal displacements and wuT is the vector of total nodal displacements.

It is noted, however, that a more stringent tolerance was used for the convergence study in Example 1.

The solutions all employed an automatic step selection procedure in which the displacement or load

increment is adjusted according to the number of iterations taken to achieve convergence in the previous

step. The standard number of target iterations was set between 3 and 5 and the maximum number of ite-

rations permitted before automatic step reduction was set to between 7 and 9. In some cases this automatic

step selection procedure was linked Crisfield�s arc-length method (Crisfield, 1981) in which the product of
iterative nodal displacements is constrained to an arc (FEA Ltd, 2002).

As mentioned in the associated paper, the end of the damage softening curve is computed from the

characteristic element length and specific fracture energy for all the plain concrete fracture examples.

The only variation from the fixed parameters described in the associated paper, is that the residual

damage factor rc has been set to 0.05 here, rather than 0.01.
6.1. Direct fracture example

The first example presents results from two plane stress analyses of a fracture test specimen example. The
un-reinforced fracture specimen was tested by Petersson (1981) and was loaded in direct tension under

displacement control. The dimensions of the specimen and two finite element meshes are shown in Fig. 1,

and the material properties are shown in Table 1.

The automatic step size procedure was used but with an upper limit of 0.01 mm placed on the prescribed

boundary displacement increment. Here the target number of iterations was set to 3 and the convergence

tolerance to 10�6 for both displacement and residual force norms. This tolerance is relatively small and is

considered smaller than necessary, however a tight tolerance is used in this example to demonstrate the

convergence properties of the consistent algorithm.
The experimental and numerical load displacement responses are shown in Fig. 2, along with a crack

plot for the coarser mesh at the opening displacement marked. The load–displacement graphs obtained



Fig. 1. Example 1. Test arrangement and F.E. meshes.

Table 1

Material properties

Example E (kN/mm2) m fc
(N/mm2)

ft
(N/mm2)

ec e0 Gf

(N/mm)

bc Z0 w mg mful

1 35 0.2 40 3.35 0.0022 – 0.10 1.15 0.6 )0.1 0.5 5

2 30 0.2 50 2.6 0.0025 – 0.103 1.15 0.6 )0.1 0.5 5

3 24.5 0.18 35 2.9 0.0022 – 0.10 1.15 0.6 )0.1 0.5 3

4 33 0.2 37 3.1 0.0022 – 0.10 1.15 0.6 )0.1 0.6 3

5 25 0.2 22.6 2.5 0.0022 0.004 – 1.15 0.6 )0.1 0.5 10

Fig. 2. Example 1. Load–deflection response and crack plot.
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using the two meshes are very close to one another and show that the calculation of the characteristic length

according to the element size is appropriate.

Details of the analysis solution history are given for the coarse mesh case in Table 2. The history from

the fine mesh solution is very similar and therefore only the coarse mesh solution details are provided. It

may be seen that the automatic step adjustment procedure and the consistent algorithm produce very good
convergence with respect to both iterative displacements and out of balance force residuals.
6.2. Cylindrical notched fracture beam

The second example presents results from a three-dimensional analysis of a cylindrical notched beam.
The un-reinforced specimen, tested by Jefferson and Barr (1995), was loaded via a shaped yoke with the



Table 2

Convergence history for Coarse mesh Example 1

Incr Iter Total disp. factor wu wf

1 0 2.00E)03 1.0000 2.89E)11
1 1 1.13E)15 1.12E)14

2 0 6.00E)03 6.67E)01 2.24E)14
2 1 7.15E)16 8.03E)15

3 0 1.40E)02 5.71E)01 1.81E)14
3 1 6.22E)16 1.01E)14

4 0 3.00E)02 5.33E)01 3.63E)02
4 1 2.77E)03 8.41E)03
4 2 4.40E)04 3.55E)05
4 3 7.15E)07 6.41E)10

51 0 3.46E)02 1.33E)01 9.86E)02
5 1 9.23E)03 5.81E)02
5 2 1.61E)03 7.29E)03
5 3 2.83E)04 1.87E)05
5 4 4.30E)07 4.50E)10

6 0 3.92E)02 1.21E)01 7.06E)02
6 1 6.57E)03 9.18E)02
6 2 3.99E)03 7.53E)03
6 3 5.44E)05 5.13E)07
6 4 2.35E)08 6.65E)14

7 0 4.39E)02 1.19E)01 5.03E)03
7 1 1.24E)04 6.85E)06
7 2 1.46E)06 2.77E)11
7 3 7.53E)13 1.27E)14

8 0 4.92E)02 1.21E)01 3.82E)03
8 1 1.13E)04 3.48E)06
8 2 6.22E)07 5.10E)12

9 0 5.67E)02 1.47E)01 4.50E)03
9 1 1.51E)04 4.00E)06
9 2 5.73E)07 4.52E)12

10 0 6.74E)02 1.72E)01 5.19E)03
10 1 1.92E)04 4.11E)06
10 2 4.46E)07 3.10E)12

11 0 8.25E)02 1.96E)01 5.89E)03
11 1 2.38E)04 3.72E)06
11 2 2.84E)07 1.60E)12

12 0 1.04E)01 2.18E)01 6.87E)03
12 1 3.02E)04 3.03E)06
12 2 1.45E)07 6.28E)13

13 0 1.34E)01 2.35E)01 9.17E)03
13 1 3.91E)04 2.29E)06
13 2 6.08E)08 1.97E)13

14 0 1.77E)01 2.50E)01 1.52E)02
14 1 4.96E)04 1.56E)06
14 2 2.42E)08 1.04E)13

(continued on next page)
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Table 2 (continued)

Incr Iter Total disp. factor wu wf

15 0 2.37E)01 2.61E)01 2.87E)02
15 1 5.96E)04 1.12E)06
15 2 2.07E)08 1.22E)13

16 0 3.22E)01 2.69E)01 5.70E)02
16 1 6.60E)04 2.05E)06
16 2 2.50E)08 3.34E)13

17 0 4.22E)01 2.39E)01 7.38E)02
17 1 4.86E)04 1.83E)06
17 2 1.26E)08 4.89E)13

18 0 5.22E)01 1.93E)01 6.53E)02
18 1 2.71E)04 7.98E)07
18 2 3.42E)09 4.55E)13

19 0 6.22E)01 1.62E)01 6.42E)02
19 1 1.59E)04 3.76E)07
19 2 9.91E)10 6.96E)13

20 0 7.22E)01 1.39E)01 7.04E)02
20 1 9.62E)05 1.12E)06
20 2 3.22E)10 1.52E)12

21 0 8.22E)01 1.22E)01 4.20E)02
21 1 6.09E)05 3.60E)07
21 2 1.15E)10 1.93E)12

22 0 9.22E)01 1.09E)01 3.52E)02
22 1 3.90E)05 2.33E)07
22 2 4.17E)11 2.42E)12

23 0 1.02E+00 9.80E)02 1.16E)01
23 1 2.56E)05 1.09E)06
23 2 6.70E)11 2.91E)12

24 0 1.12E+00 8.92E)02 2.34E)02
24 1 1.68E)05 9.66E)08
24 2 6.90E)12 3.59E)12

25 0 1.22E+00 8.19E)02 1.86E)02
25 1 1.12E)05 6.07E)08
25 2 3.14E)12 3.37E)12

26 0 1.32E+00 7.57E)02 1.46E)02
26 1 7.57E)06 3.75E)08
26 2 1.53E)12 7.74E)12

27 0 1.42E+00 7.03E)02 2.61E)02
27 1 5.39E)06 4.66E)08
27 2 1.46E)12 7.57E)12

282 0 1.50E+00 5.18E)02 5.26E)03
28 1 2.22E)06 5.23E)09
28 2 3.06E)13 6.78E)12

Notes: (1) 1 failed step and then a step adjustment between increments 4 and 5. (2) Final increment governed by max. prescribed

displacement.

Iter Iteration numbers, noting 1st iteration has number 0 Iincs¼ increment number.

Total Step factor relative to a prescribed displacement of 0.1 mm.
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load level being controlled by feedback from a clip gauge at the notch tip. The specimen was supported on

curved cradles, as shown in Fig. 3. The material properties are shown in Table 1 and the mesh, which makes

use of double symmetry, is illustrated in Fig. 4. In the finite element model the load was applied as a

uniform load on the curved surface above the notch, as shown in Fig. 4, with Crisfield�s arc-length being
employed to allow softening to be simulated. It is noted that because symmetry is used the actual value of

Gf used in the analysis is 1/2 of that quoted in the material properties table, since the simulated fracture

process zone width is twice that modeled.

The experimental and numerical load displacement responses are shown in Fig. 5 for both the crack

mouth opening displacement, which is actually the notch mouth opening here, and the central deflection.
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Fig. 5. Example 2. Numerical and experimental response.

Fig. 4. Example 2. Finite element meshes.
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Fig. 3. Example 2. Experimental arrangement of notched cylinder.



6014 A.D. Jefferson / International Journal of Solids and Structures 40 (2003) 6001–6022
The deformed mesh is given in Fig. 4 and this shows that strains localize in the material above the notch, as

would be expected for such a test. The agreement between the numerical and experimental responses is

generally good.

42 steps were used in the solution, with an average of 4 iterations per step, and during the solution the
step size was automatically reduced twice when convergence was not achieved in the maximum number of

iterations per increment (8 in this case).

6.3. Single edged notch beam

This single edge notch beam test by Arrea and Ingraffea (1982) has been used by a number of researchers

to assess their models (e.g. Rots and de Borst, 1987; Rots, 1988; Tano et al., 1998) and has been used to

show crack path sensitivity to the orientation of element local coordinate systems. The testing arrangement

and mesh used for the analysis are both shown in Fig. 6 and the material properties are given in Table 1.

As with the previous example, this analysis was undertaken using Crisfield�s arc-length method, and the
main load was applied in a patch on the upper edge, as illustrated in Fig. 6. About 50 steps were used in the

solution with an average of 4 iterations per increment. Four times during the analysis the step size was

reduced when convergence was not achieved within the maximum number of iterations, which was 8 in the

present case.

The results are shown in Fig. 7 which gives a load verses crack mouth sliding displacement graph, a

magnified deformed mesh plot at the final step, as well as crack plots at intermediate and final steps. The

initial response is a little less stiff than that observed in the experiment but this was also found by others (for

example Rots, 1988). In this example no attempt has been made to repeat the crack path mesh dependence
studies conducted by others, but rather the aim here is to show that, with a reasonably fine mesh, the

constitutive model does lead to the prediction of a curved crack with softening down to a relatively small

proportion of the peak load. It is acknowledged however that the predicted crack path is not as curved as

that observed in the experiment. The present analysis was stopped at 50 steps and throughout maintained

good convergence and satisfied the standard convergence tolerance of 10�4.

6.4. Displacement controlled shear-tension tests of Nooru-Mohamed

Certain of Nooru-Mohamed�s tests have been considered by others with numerical simulations (for

example Jirasek and Zimmermann, 1997 and O�zzbolt et al., 2002), but the final series reported in his thesis
has received little attention from numerical analysts and it is this series, in which both normal and shear

displacements were controlled via computer controlled feedback loops, that is considered here. In this
F0.13F
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397 6161 397
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Fig. 6. Example 3. SEN beam by Arrea and Ingraffea, test arrangement and mesh.



Fig. 7. Example 3. SEN analysis results.
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series, tests were conducted with three normal to shear displacement ratios (u=v) of 1, 2 and 3, which were
denoted 6a, 6b and 6c respectively by Nooru-Mohamed and here simulations are carried out for all three

ratios. The experimental set-up and finite element mesh are illustrated in Fig. 8.

Comparisons between the experimental and numerical load displacement responses are shown in Fig. 9.

Fig. 10 shows crack plots, major principal strain contour plots and deformed meshes at the final step of

each analysis. The major principal strain plots are included because they provide a good visualization of

where major cracking occurred, since this is not provided by the rather diffuse crack plots of 6a and 6b, in

which no distinction is made between slightly and heavily damaged PODs.

It is noted that the experimental response given here for 6a is the average of the two tests reported by
Nooru-Mohamed, whereas for 6b and 6c only one test was reported for each displacement ratio.
200
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30

Fig. 8. Example 4. Shear-tension tests by Nooru-Mohamed, test arrangement and mesh.
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Fig. 9. Example 4. Load–displacement responses.

Fig. 10. Example 4. Deformed meshes (10·), localized strain and crack plots at final steps.
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The number of steps to achieve the solutions shown varied from 50 to 80 and the number of steps with

automatic reductions varied from 5 to 7. The target number of iterations was set to 3 and the limit before

automatic step reduction to 8, in all three analyses.

Fig. 9 shows significant discrepancies between numerical and experimental responses, with numerical
compressive and shear forces in post-cracking regions generally being higher than the experimental.

However, the characteristics of the experimental and numerical responses and the trends with respect to

increasing u=v ratios are similar.

The contact functions were developed for the present model from the work of Walraven and Reinhardt

(1981) (Jefferson, 2003), with a parameter that reflects the maximum aggregate size. It seems that these

functions and the single contact parameter are not able to closely reflect the behavior of Nooru-Mohamed�s
tests. However, since the trends and characteristics of the numerical response are consistent with those from

these experiments and because this type of test is noted for its variability (see Nooru-Mohamed, 1992 and
Hassanzadeh, 1991), it is tentatively concluded that this study does demonstrate that the model can rep-

resent shear normal behavior, when post-cracking shear contact is significant.
6.5. Reinforced concrete beam by Bresler and Scordelis

The final example is the analysis of a rectangular reinforced concrete beam tested by Bresler and

Scordelis (1963). This beam has been used over many years as a test for numerical models for concrete

(ASCE, 1982). The aims of including it here are firstly to evaluate the relative effect of including post-

damage contact in the constitutive model for a full-scale reinforced concrete case and secondly to include an

example in which concrete crushing plays a significant role. The former aim was realised by analysing the

beam once using the standard Craft model and then reanalysing it using a damage only (DO) version of

model, in which the effects of post-crack contact were not included. In terms of the model equations this
was achieved by setting the Hf function to zero.

The experimental details of the beam, along with the finite element mesh used for the analysis, are shown

in Fig. 11 and the material properties for the test are given in Table 1.

The standard analysis used 48 steps, the target number of iterations per step was 5 and the maximum

number, before automatic step reduction, set to 9. Step reduction occurred 9 times in the solution. It may be
Fig. 11. Example 5. Test arrangement and FE mesh for beam by Bresler and Scordelis.
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Fig. 12. Example 5. Load–displacement responses.

Fig. 13. Example 5. Deformed meshes (10·) and crack plots at final steps.
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seen from Fig. 12 that the numerical response is in close agreement with the experimental response and the
predicted peak load is within 2% of the experimental peak. A deformed mesh plot and crack plot, which

shows widespread diffuse cracking, are shown in Fig. 13. At the final load step the concrete at the top of the

section in the central region of the beam had reached the compressive strength limit.

The numerical behavior obtained using the DO and standard models were very similar up to a �departure
point�, which is indicated on Fig. 12. In order to get the DO analysis to progress beyond this point it was

necessary to use a slacker residual force tolerance of 0.01. Furthermore, an arc-length solution was em-

ployed since there was a degree of overall softening. From the deformed mesh plot and crack plots it may

be seen that in the DO analysis the model predicts a horizontal shear failure in the concrete above the
second line of reinforcing bars; this occurs prior to the overall flexural failure at mid-span. This is con-

sidered reasonable since, without Interlock, the shear transfer mechanism is much reduced. The peak load

in the DO case is 190 kN, which compares with 322 kN obtained using for the normal model. For this case,

therefore, aggregate interlock contributed 41% to the overall strength of the beam, which is within the

traditionally suggested limits of 30–60% (ACI-ASCE Committee, 426, 1973).
7. Concluding remarks

The paper has described an overall strategy for the computation of stresses for a plastic-damage-contact

model, a part of which was a description of a return-mapping algorithm which fully couples plastic flow to
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directional damage and ensures that local and global damage constitutive relationships and the plastic yield

condition are all simultaneously satisfied. Furthermore, a tangent constitutive matrix was derived which is

consistent with the return-mapping algorithm.

The implementation of the Craft model using the above computational strategy was evaluated in a series
of numerical examples. A convergence study was reported for a direct tension fracture test that provided

insight into the performance of the consistent algorithmic strategy and served also to validate it. Further

fracture examples demonstrated the ability of the model to simulate a range of behavior from plain concrete

tests, whilst throughout satisfying relatively stringent convergence tolerances and providing simulations in

reasonable agreement with experimental results.

One of the key new aspects of the model, which uses contact theory to represent crack closure and

aggregate interlock, was demonstrated in a set of analyses based on the shear-normal test series of Nooru-

Mohamed, in which aggregate interlock plays a significant role. Whilst not all of the numerical results were
in close agreement with the experimental data, the overall trends of behavior were consistent with the

experiments. From this study it was tentatively concluded that the model correctly represented the main

characteristics of post-crack shear normal behavior, including situations in which post-crack shear contact

is significant.

In a final example the model was tested using a reinforced concrete problem in which crushing and

aggregate interlock were both significant. It was shown that the model performs well and provides solutions

consistent with the experimental data. Furthermore, the relative contribution of aggregate interlock was

explored by removing this component from the model, and it was shown that the peak load was 41% lower
without aggregate interlock.

Finally it is concluded that the Craft model, implemented in a finite element program with the proposed

return-mapping and consistent tangent matrix algorithms gives reasonable, and often accurate, simulations

of a range of plain and reinforced concrete specimens, with solutions that exhibit good convergence

properties.
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Appendix A. Stress transformation matrix derivatives

The form of the transformation matrix was given in the associated paper Jefferson (2003). The principal

stresses are given by
rI ¼
2ffiffiffi
3

p
ffiffiffiffi
J2

p
cos h
�

þ 2k
p
3

�
þ I1

3
ðA:1Þ
in which, I is the principal stress number, and k ¼ 0;�1;þ1 for I ¼ 1; 2; 3 respectively. I1, is the first stress
invariant, J2 the second deviatoric invariant and angle h the Lode angle.

A convenient relationship between the principal stress derivatives and the eigenvector components is as

follows
N1 ¼ r2d1 r2d2 r2d3 2rd1rd2 2rd2rd3 2rd1rd3
� �

¼ orI

or
ðA:2Þ
where N1 denotes the first row of N.
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The principal stress derivatives can be computed from (A.3), as follows
orI

or
¼ c1a1 þ c2a2 þ c3a3 ðA:3Þ
in which
a1 ¼
oI1
or

; a2 ¼
oJ2
or

; a3 ¼
oJ3
or

; c1 ¼
1

3
; c2 ¼

AðhÞffiffiffiffiffiffiffi
3J2

p þ 3dAðhÞ
2 sinð3hÞJ 2

2

J3; c3 ¼
�dAðhÞ
J2 sinð3hÞ
AðhÞ ¼ cosðhÞ if I ¼ 1, AðhÞ ¼ 0:5ð� cosðhÞ þ
ffiffiffi
3

p
sinðhÞÞ if I ¼ 2 and AðhÞ ¼ �0:5ðcosðhÞ þ

ffiffiffi
3

p
sinðhÞÞ if

I ¼ 3 and dAðhÞ ¼ dA=dh.
The components of rd can be computed from (A.2) but it is noted that special provision is required when

J2 is equal or near zero and also when h is near or equal to 0 or p=3.
The second differential of principal stresses is used to derive the eigenvector derivatives, as follows:
ordj
or

¼ 1

2rdj

o2rI

or2

� 	<j>

if jrdj j 6¼ 0; otherwise
ordj
or

¼ 1

2rdk

o2rI

or2

� 	<‘>

ðA:4Þ
where the indices j, k and ‘ sequentially take the values
j ¼ ½ 1 2 3 �; k ¼ ½ 2 1 3 � and ‘ ¼ ½ 4 4 5 � or

j ¼ ½ 1 2 3 �; k ¼ ½ 3 3 1 � and ‘ ¼ ½ 6 5 6 �;
the second combination being used when a zero component is encountered in the denominator.

The process for deriving the shear directions sd and td was discussed in the associated paper, and the

computation will be illustrated for one particular choice of the s direction, i.e.
sd ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d1 þ r2d2

q �rd2
rd1
0

2
4

3
5 ðA:5Þ
Noting that td ¼ rd � sd, the stress derivatives of sd and td are then obtained as follows:
osd

or
¼ osd

ord

ord

or
and

otd

or
¼ otd

ord

ord

or
þ otd

osd

osd

or
ðA:6Þ
where
osd

ord
¼ �1

ðr2d1 þ r2d2Þ
3=2

�rd2rd1 �r2d1 0

r2d1 rd2rd1 0

0 0 0

2
64

3
75þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2d1 þ r2d2

q 0 �1 0

1 0 0

0 0 0

2
64

3
75

otd ¼
0 sd3 �sd2

�sd3 0 sd1

2
4

3
5 and

otd ¼
0 �rd3 rd2
rd3 0 �rd1

2
4

3
5

ord sd2 �sd1 0
osd �rd2 rd1 0
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The derivative of N may now be expressed as follows
oN

or
¼

2rd1 dr1r ðsd1 dr1r þ rd1 ds1rÞ ðtd1 dr1r þ rd1 dt1rÞ
2rd2 dr2r ðsd2 dr2r þ rd2 ds2rÞ ðtd2 dr2r þ rd2 dt2rÞ
2rd3 dr3r ðsd3 dr3r þ rd3 ds3rÞ ðtd3 dr3r þ rd3 dt3rÞ

2ðrd2 dr1r þ rd1 dr2rÞ ðsd2 dr1r þ sd1 dr2r þ rd2 ds1r þ rd1 ds2rÞ ðtd2 dr1r þ td1 dr2r þ rd2 dt1r þ rd1 dt2rÞ
2ðrd3 dr2r þ rd2 dr3rÞ ðsd3 dr2r þ sd2 dr3r þ rd3 ds2r þ rd2 ds3rÞ ðtd3 dr2r þ td2 dr3r þ rd3 dt2r þ rd2 dt3rÞ
2ðrd3 dr1r þ rd1 dr3rÞ ðsd3 dr1r þ sd1 dr3r þ rd3 ds1r þ rd1 ds3rÞ ðtd3 dr1r þ td1 dr3r þ rd3 dt1r þ rd1 dt3rÞ

2
6666664

3
7777775

T

ðA:7Þ
where dr1r ¼ ord1=or, ds1r ¼ osd1=or etc.
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